7.3恩格尔曲线是否存在异方差?数据集food.dta包含有关每周食物开支(food_exp)与每周收入(income)的40个观测值。
(1)将food_exp与income的散点图与线性拟合图画在一起。根据此图,是否可能存在异方差?此异方差与收入的关系是怎样的?
(2)将food_exp对income进行回归
(3)以5%的置信度,使用BP检验,检验是否存在异方差(假设扰动项为iid)
(4)以5%的置信度,使用怀特检验,检验是否存在异方差
(5)定义食物开支比例food_share为food_exp除以income,将food_share与income的散点图与线性拟合图画在一起,从图上看,是否还存在异方差?
(6)将food_share对income进行回归
(7)以5%的置信度,使用BP检验,检验是否存在异方差(假设扰动项为iid)
(8)以5%的置信度,使用怀特检验,检验是否存在异方差
解答如下:
在Stata中导入数据集food.dta,在命令窗口输入如下命令:
twoway scatter food_exp income||lfit food_exp income
reg food_exp income
estat hettest,iid
estat imtest,white
gen food_share=food_exp/income
twoway scatter food_share income||lfit food_share income
reg food_share income
estat hettest,iid
estat imtest,white
food_exp与income的散点图与线性拟合图画在一起结果如下:
(1)由上图发现各散点并未均匀分布在拟合线上下,左边密右边疏,可大致判断可能存在异方差,随着收入的增加,扰动项的方差逐渐增大,不满足球形扰动项。
将food_exp对income回归结果如下:
以5%的置信度进行BP检验、怀特检验结果如下:
(3)(4)由上述检验结果发现,BP检验p值为0.0066,怀特检验p值为0.0229,均小于0.05,故拒绝同方差的原假设,认为存在异方差。
food_share与income的散点图与线性拟合画在一起结果如下:
(5)从上图中可以看出,各散点都大致均匀分布在拟合直线附近,波动幅度近似相同,可大致判断不存在异方差。
将food_share对income回归结果如下:
再次使用BP检验、怀特检验,检验新回归模型结果如下:
(7)(8)由检验结果知,BP检验p值为0.7748,怀特检验p值为0.2722,均大于0.05,故不拒绝同方差的原假设,认为已经不存在异方差了。
希斯克利: 欢迎指正,博友可以写下自己的见解,并论证其正确性,该释义是经过多方求证,并与计量从业者讨论所写,网上有很多种写法注意辨别,博友可以写下自己的见解
乘风入你梦: 第二问相关系数不应该是-0.1328,下面的0.000不是相关系数的显著性水平嘛
Suki_03: 怎么加标签
2301_80102139: 感恩大佬!比心~
qwdOooOoOoo_: 大佬啥意思?没听懂